Analyse

Exam

28th of June of 2007

- 1 Let X be a compact subset of \mathbb{R}^n . Prove
 - (i) X is closed and bounded,
 - (ii) if A is a closed subset of X, A is compact.

(2 points)

- 2 Consider $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $f(x,y) = \frac{yx^2 + y^4}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (i) Is f continuous at (0,0)? (give an appropriate argument.)
 - (ii) Is f differentiable at (0,0)? (give an appropriate argument.)

(2 points)

- 3 Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $f(x,y) = x^3y$
 - (i) write down the the definitions of integrability and differentiability,
 - (ii) prove that f is differentiable at $(a, b) \in \mathbb{R}^2$,
 - (iii) use the definition of integrability to compute the integral of f in $X = [0,1] \times [0,1]$. (Hint: prove first that $1^3 + 2^3 + 3^3 + \ldots + n^3 = (1+2+3+\ldots+n)^2 = (\frac{n(n+1)}{2})^2$)

(4 points)

4 Write down the implicit function theorem. (A proof of it is not required.) (1 point)